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MME6106 Advanced Thermodynamics 

Lecture 2: Fundamental Principles and Equations for a Closed System, Part 1 

Ref: (1) Lupis / Ch01, (2) Tester, Ch03&04. 

 

 

1.   THE FIRST LAW OF THERMODYNAMICS FOR CLOSED SYSTEM 

1.1   Enunciation of the First Law 

In its simple form, the first law states: “In any process, the energy is conserved.” 

The mathematical translation of this principle is: For the amount heat Q and work W absorbed into the 

system, the total amount of energy E change in (or absorbed by) the system is 

𝑑𝐸 =  𝛿𝑄 +  𝛿𝑊                (1.1𝑏) 

or, for a finite process 

∆𝐸 =  𝑄 +  𝑊                (1.1𝑏) 

Here Q and W are both path dependent functions.  

For composite systems with external force fields, the total energy E has three major components: 

(1) kinetic energy, EKE, associated with the motion of the system, 

(2) potential energy, EPE, associated with the relative position of the system, and 

(3) internal energy, U, associated with the energy contained in the molecules comprising the system. 

For simple systems with no external force fields acted upon the system, the total energy term in 

eq(1.1) can be replaced by the internal energy. The first law then transforms into: 

𝑑𝑈 =  𝛿𝑄 +  𝛿𝑊                (1.2) 

The applications of the first law are merely accounting processes. But its significance is not 

immediately apparent since dE cannot be measured directly. Only when the heat and work interactions 

are measured in terms of thermodynamic variables (m or n, T, P, V, etc.), we obtain the full utility of 

the First Law. 

Almost all engineering applications of the First Law fall within two categories: 

(1) for given or measured interactions at the boundaries, what are the corresponding changes in the 

properties of the system? and  

(2) for given changes in the properties, what interactions may occur at the boundaries? 

 

1.1.1   Work interactions 

The work term includes all non-thermal interactions. 

According to mechanics, the mechanical work, W, associated with the movement of a rigid body is 

defined by the scalar product of the net force and displacement vectors 

𝛿𝑊 =  (∑𝑭). 𝑑𝒙                  (1.3𝑎) 

The force against which the work is done can be either a boundary force, FS, (acting on the boundary 

of the system) or a body force, Fb (associated with the external fields, e.g., gravitational, inertial, 

coulombic, etc.). For a rigid body acted upon by both boundary and body forces, Newton’s Second 

Law of Motion states that 

∑𝐹𝑠 +  ∑𝐹𝑏  =   0             (1.3𝑏) 
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The most common work term in thermodynamics is the so-called mechanical work as expressed by 

“the work done against external pressure”,  

𝛿𝑊𝑟𝑒𝑣 = −𝑃𝑒𝑥𝑡𝑑�̅� =  −𝑃𝑑�̅�                  (1.4) 

1.1.2   Heat interactions 

Heat is a thermodynamic quantity and is recognisable only by its effect on material substance. 

Using First Law, heat is the energy difference between two states an adiabatic process, which can be 

determined by measuring the work. 

∆𝐸 =  0 + 𝑊 =   𝑊𝑎𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐        (1.5𝑎) 

Now, for any process (adiabatic or non-adiabatic) within the same initial and final states, the energy 

difference will be the same as that found for the adiabatic process (as energy is a state function). 

If the process is not adiabatic, the heat as the difference of the total energy change and the actual work 

performed. 

𝑄 =  ∆𝐸 − 𝑊 =   𝑊𝑎𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐 − 𝑊𝑎𝑐𝑡𝑢𝑎𝑙         (1.5𝑏) 

A system must have at least one non-adiabatic or diathermal wall if it is to undergo a heat interaction. 

The converse is, however, not necessarily true. For example, if the temperatures of system and its 

surroundings are equal, there would be no heat interaction even though the system may have a 

diathermal wall. 

 

1.2   State Function and Perfect Differentials 

Regardless of the transformation process linking the two states 1 and 2, if the change in the property Z 

always remains   

∆𝑍 =  𝑍2 − 𝑍1              (1.6) 

then Z is said to be a state function, and its differential dZ will be a perfect differential. 

Mathematically, if Z depends on the variables x and y, and it is possible to write 

𝑑𝑍 =   𝑀(𝑥, 𝑦)𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑦             (1.7𝑎) 

where 

𝑀(𝑥, 𝑦) =  (
𝜕𝑍

𝜕𝑥
)

𝑦
       and        𝑁(𝑥, 𝑦) =  (

𝜕𝑍

𝜕𝑦
)

𝑥

        (1.7𝑏) 

then the necessary and sufficient condition for dZ to be a perfect differential (regardless of any path 

chosen between the two states) is: 

(
𝜕𝑍

𝜕𝑦
)

𝑥

=  (
𝜕𝑍

𝜕𝑥
)

𝑦
                  (1.8) 

which is the Maxwell relation. 

If this test on M and N is not successful, then dZ is not a perfect differential and Z is not a state 

function. 

Also, Eq.(1.7a) cannot be integrated between two states 1 and 2 unless one specifies a certain path, and 

the change Z will depend on that path. 
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Question 

Is hardness a state function? 

Answer 

To answer this question, consider two properties A (x, y) and B (x, y, z) of a system, which change from 

state 1 to state 2. 

 

 

If the states 1 and 2 are defined solely by the variables x and y, then [A(x,y)]2a = [A(x,y)]2b, which leads to 

A1


2a = A1


2b. 

But since [B(x,y,z)]2a  [B(x,y,z)]2b, this lead to B1


2a  B1


2b. 

Thus, A is a state function. Property B is often said to depend on the history of the system, which is resulted 

from an insufficient characterisation of the initial and final states. 

Likewise, hardness is thus a state function. However, the number of variables necessary to fully characterise 

the system (e.g., density, distribution patterns of dislocation, vacancy, grain boundary, etc.) may often be 

too large to determine the existence of a perfect differential. 

 

1.3   Applications of the First Law for Closed Systems 

Applications of the first law of thermodynamics are illustrated here by two examples. In both cases, 

ideal gases have been chosen as the system. 

An ideal gas is defined as one that obeys the ideal gas law, 

𝑃�̅� = 𝑛𝑅𝑇                  (1.9) 

and whose total internal energy is a function only of n and T, that is, �̅� =  �̅�(𝑛, 𝑇), and 

�̅� = 𝑛𝑈0 + 𝑛 ∫ (
𝑑𝑈

𝑑𝑇
) 𝑑𝑇                  (1.10) 

Here U0 is a reference energy per mole (or mass) of material at T = T0. 

It is obvious that in dealing with ideal gases, there is a great simplification since only the variables n 

and T need to be considered. For non-ideal gases (and liquids or solids), �̅� would have to be expressed 

as a function of n plus two other independent variable properties. 

In presenting numerical examples where only ideal gases are considered, eq(1.9) is used to relate the 

pressure-temperature-volume variables. To employ eq(1.10), we defined heat capacity, C, to relate 

heat input to temperature: 

𝐶 =  
𝛿𝑄

𝑑𝑇
              (1.11𝑎) 

Since q is not a perfect differential, C is a process variable and depends on the path of transformation. 

2b 

x 

y 

z 

1 2a 
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𝐶𝑃 =  (
𝛿𝑄

𝑑𝑇
)

𝑃
               (1.11𝑏) 

𝐶𝑉 =  (
𝛿𝑄

𝑑𝑇
)

𝑉
             (1.11𝑐) 

𝐶𝑃 − 𝐶𝑉 =  
𝑇𝑉𝛼2

𝛽
      (1.11𝑑) 

If the work of the system is done only against external pressure then, using first law, 

𝑑�̅� =  𝛿𝑄 − 𝑃𝑑𝑉 

𝑑�̅�𝑉 =  𝛿𝑄𝑉 =  𝐶𝑉𝑑𝑇                  (1.12𝑎) 

and, using the definition of enthalpy 

𝑑�̅� =  𝛿𝑄 + �̅�𝑑𝑃 

𝑑�̅�𝑃 =  𝛿𝑄𝑃 =  𝐶𝑃𝑑𝑇                  (1.12𝑏) 

The definition of CP and CV are, however, not limited to ideal gases, but applies in all cases. 

The temperature dependence of the CP of a substance is often expressed by an equation of the form 

𝐶𝑃 = 𝑎 + 𝑏𝑇 + 𝑐𝑇−2                 (1.13) 

where a, b and c are constants. 

 

 

Example 1.1 

Two well-insulated cylinders are placed as shown in the figure below. The pistons in both cylinders are of 

identical construction. The clearances between piston and walls are also made identical in both cylinders. 

The pistons and the connecting rod are metallic. Cylinder A is filled with gaseous helium at 2 bar and 

cylinder B is filled with gaseous helium at 1 bar. The temperature is 300 K and the length L is 10 cm. Both 

pistons are only slightly lubricated. The stops are removed. After all oscillations have ceased and the system 

is at rest, the pressures in both cylinders are, for all practical purposes, identical. 

Assuming that the gases are ideal with a constant CV and, for simplicity, assuming that the masses of 

cylinders and pistons are negligible (i.e., any energy changes of pistons and cylinders can be neglected), 

what are the final temperatures? 

 

Solution 

Since mass and initial temperature is known for the gas in each compartment, the final temperature can be 

calculated for each compartment, if the final energy – or energy change – of each compartment is determined 

first. 

Thus, using eq(1.9), (1.10) and (1.12a) for each simple system (for which �̅� is replaced with 𝑈), 

𝑛𝐴 =  
𝑃𝐴�̅�𝐴𝑖

𝑅𝑇𝐴𝑖

               (1.14) 

A B 

stop 

L L 

stop 
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𝑛𝐵 =  
𝑃𝐵�̅�𝐵𝑖

𝑅𝑇𝐵𝑖

             (1.15) 

𝑇𝐴𝑓 =  𝑇𝐴𝑖 + 
𝑈𝐴𝑓 − 𝑈𝐴𝑖

𝑛𝐴𝐶𝑉

                (1.16) 

𝑇𝐵𝑓 =  𝑇𝐵𝑖 + 
𝑈𝐵𝑓 − 𝑈𝐵𝑖

𝑛𝐵𝐶𝑉

               (1.17) 

where 𝑈𝐴𝑓 and 𝑈𝐵𝑓 are the only unknowns (𝑈𝐴𝑖  and 𝑈𝐵𝑖  can be chosen at will because U0 in eq(1.10) is an 

arbitrary constant). 

Since the pistons and shaft have been assumed to be good conductors of heat, the final temperatures of 

compartments A and B will be equal: 

𝑇𝐴𝑓 =  𝑇𝐵𝑓                  (1.18) 

Now, the composite system (A+B) is equivalent to an isolated system. Thus, the overall changes in the total 

internal energy of this composite system will be zero, i.e., 

∆𝑈𝐴 = −∆𝑈𝐵              (1.19) 

Combining eq(1.19) with eqs(1.16) and (1.17), and making use of eq(1.18), we obtain 

𝑇𝑓 =
𝑛𝐴𝑇𝐴𝑖 + 𝑛𝐵𝑇𝐵𝑖

𝑛𝐴 + 𝑛𝐵

                  (1.20) 

Now, for this special case where TAi = TBi  = Ti, we have 

𝑇𝑓 =  𝑇𝑖 = 300 𝐾 

 

Let us now use the hindsight to re-evaluate the problem. 

We had a qualitative feeling for the path that the frictional work is involved, but we could not describe 

the path quantitatively because we did not know the coefficient of friction of either piston-cylinder. 

Nevertheless, we were able to determine the final conditions and, therefore, we did not have to 

describe the path to find the solution. 

Such a situation would be expected if the end state were independent of the path. This is obviously the 

case in the present example: since the composite system A+B is an isolated simple system, there is 

only one state to which it can go, and that is the one for which �̅� = �̅�𝐴𝑖 + 𝑈𝐵𝑖 and 𝑇 = 𝑇𝐴𝑓 =  𝑇𝐵𝑓.  

For an ideal gas, �̅� is a unique function of n and T only, and thus the final temperature can be 

determined. If the gas were not ideal, �̅� would also depend on �̅� (or P). But, since the final energy, 

volume, and mass are known, the final temperature could still be determined. 

 

Example 1.2 

Consider the situation described in Example 1.1, but with well-insulated pistons and connecting rods of low 

thermal conductivity. What are the final temperatures after the oscillations have ceased and the pressures 

have equalised? 

Solution 

The composite A+B system is no longer a simple system because it contains an internal adiabatic wall. 

Therefore, the final composite system can no longer be described by a single equilibrium state; instead, the 

final conditions will depend on the path of the process. 

Now with the exception of eq(1.18), eqs.(1.14) to (1.17) and eq(1.19) are still valid. Combining eqs.(1.16) 

and (1.17) with eq(1.19) results in 

𝑛𝐴𝐶𝑉(𝑇𝐴𝑓 − 𝑇𝐴𝑖) + 𝑛𝐵𝐶𝑉(𝑇𝐵𝑓 − 𝑇𝐵𝑖) = 0                (1.21) 
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which now gives us one equation with two unknowns, TAf and TBf.  To find other relationship between TAf 

and TBf, we need to make some assumptions regarding the path. 

If we have no information on the coefficient of friction, we are forced to use our engineering judgement to 

simplify the situation while obtaining a close approximation to the actual conditions. Let us assume that 

there is a friction only in compartment B. This will give us a lower bound for TAf and the upper bound for 

TBf. We can then treat the case of friction only in compartment A, which will give us an upper bound for 

TAf. In this manner, we can bracket the true solution. 

If there is no friction in compartment A and if we assume that the process is quasi-static (i.e., no pressure or 

density gradients within the compartment), we can write the First Law for this simple system of gas in A as 

𝑑�̅�𝐴 =  +𝛿𝑊𝐴 =  −𝑃𝐴𝑑�̅�𝐴                  (1.22) 

since 

𝛿𝑊𝑊𝐴 =  𝛿𝑄𝑊 =  𝛿𝑄𝐴𝐵 = 0 

where WWA is the work done by the wall of A, QW is the heat conducted through the wall, and QAB is the 

heat conducted from A to B through the piston. 

Substituting for 𝑈𝐴 in eq(1.22) from eq(1.16), and for �̅�𝐴  from eq(1.9), eq(1.22) becomes 

𝑛𝐴𝐶𝑉𝑑𝑇𝐴 =  −𝑛𝐴𝑅 (𝑑𝑇𝐴 −
𝑇𝐴

𝑃𝐴

𝑑𝑃𝐴) 

(
𝐶𝑉 + 𝑅

𝑅
)

𝑑𝑇𝐴

𝑇𝐴

 =   
𝑑𝑃𝐴

𝑃𝐴

 

Integrating between initial and final conditions, we obtain 

𝑇𝐴𝑓

𝑇𝐴𝑖

 =   (
𝑃𝐴𝑓

𝑃𝐴𝑖

)

𝑅
(𝐶𝑉+𝑅)⁄

                   (1.23) 

Equations (1.21) and (1.23) give us two equations in three unknowns, TAf, TBf, and PAf = Pf. The final 

pressure can be eliminated in the following manner. Since 

�̅�𝐴𝑓 + �̅�𝐵𝑓 =  �̅�𝐴𝑖 +  �̅�𝐵𝑖 =  �̅�𝑇          (1.24) 

and �̅�𝑇 is known, substitution of eq(1.9) into Eq(1.24) gives 

�̅�𝑇 =  (𝑛𝐴𝑇𝐴𝑓 + 𝑛𝐵𝑇𝐵𝑓)
𝑅

𝑃𝑓

           (1.25) 

Equation (1.25) together with eqs(1.21) and (1.23) give us three equations in these unknowns.  From 

eqs(1.25) and (1.21), 

𝑃𝑓 =  
𝑃𝐴𝑖�̅�𝐴𝑖 + 𝑃𝐵𝑖�̅�𝐵𝑖

�̅�𝐴𝑖 + �̅�𝐵𝑖

 = 1.5 bar 

From eq(1.23), with CV = 12.6 J/mol-K, 

𝑇𝐴𝑓 =  (
1.5

2
)

0.4

 = 267 K 

and from eq(1.21) 

𝑇𝐵𝑓 =  366 K 

If it is assumed that there is friction only in compartment A, then we would have found  

𝑇𝐵𝑓 = 353 𝐾 

Since in the actual case the friction is distributed between A and B, a better approximation might be  TBf  =  

(366 + 353)/2  =  360 K and, from eq(1.21), TAf  =  270 K. 

The fact that the adiabatic wall in Example 1.2 prevents a direct solution to the problem in the absence of a 

complete description of the path is sometimes referred to as the “adiabatic dilemma.” In fact, it is no 

dilemma at all, but results from the difference between heat and work interactions. 
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1.4   Standard States 

Why does thermodynamics rarely deal with the absolute value of the energy or enthalpy? 

It is possible, though, to assign a non-arbitrary value through the Einstein’s relation between mass and 

energy, E = mc
2
. Theoretically, the energy of a system is measurable by its mass by considering the 

fact that “the law of conservation of mass is only a consequence of the law of conservation of energy.” 

 1 g mass    9 x 10
20

 erg  =  20 billion kcal. 

In true sense, unlike energy, mass is not conserved. For a nuclear reaction 

 4 H      He ;     H  =  0.58 billion kcal 

 4 x 1.00797    4.0026 

about 0.02928 g of mass is converted into energy, thus releasing nearly 600 billion cal of energy. This 

is well above the thermodynamic range because typical chemical reactions do not involve more than a 

few kilocalories. So the corresponding changes in mass are thus well below the limits of detection.  

So although it is then possible in thermodynamics to choose an arbitrary value for the energy or the 

enthalpy of an element, generally no such value is chosen because there is no need for it. Thus, the 

absolute values of energy or enthalpy remain arbitrary for the elements of our material world. 

Since only changes in the enthalpy enter into calculations, it is convenient to choose standard 

reference states. Unless otherwise specified, “the standard state of a species corresponds to the most 

stable structure of that species at the specified temperature under 1 atm pressure.” So, for instance, at 

room temperature, the standard states of iron, mercury and oxygen are, respectively, a bcc -iron 

(ferrite), a liquid and a diatomic gas. 

We must emphasize that, it is possible to identify a standard state that does not correspond to the most 

stable form of the species under consideration. For example, it may be convenient to choose a standard 

state of H2O at 298 K that is a gas instead of the liquid, of an fcc austenite of iron rather than ferrite. 

Standard state may also correspond to a virtual state, that cannot be physically obtained but that can be 

defined theoretically and for which properties of interest can be calculated. Whatever we choose, we 

must recall that it corresponds to a fixed pressure, normally at 1 atm. 

1.5   Heats of Reaction 

For a general reaction 

𝜈1𝐴1 +  𝜈2𝐴2 +  … . + 𝜈𝑘𝐴𝑘  =   𝜈𝑘+1𝐴𝑘+1 + … + 𝜈𝑟𝐴𝑟             𝑜𝑟,      ∑ 𝜈𝑖𝐴𝑖

𝑟

𝑖=1
= 0         (1.28) 

where the Ais represents reactants (A1, ...Ak) or products (Ak+1, ... Ar) and the i balance the reaction 

stoichiometrically (+ve for the products, -ve for the reactants), the heat of reaction is defined as 

∆𝐻 =  ∑ 𝜈𝑖𝐻𝑖

𝑟

𝑖=1

              (1.29) 

where Hi is the enthalpy of the substance Ai. When Ai is not pure (e.g., when it is alloyed or a 

solution), Hi represents its partial molar enthalpy, �̅�𝑖. 

When all substances Ai are in their standard states, Eq.(1.29) becomes 

Δ𝐻0 =  ∑ 𝜈𝑖𝐻𝑖
0

𝑟

𝑖=1

             (1.30) 

H or H
0
 represents the heat generated by the complete transformation of i moles of reactants Ai (i 

= 1, ..., k) into i moles of products Ai (i = k+1, ..., r) according to the reaction (1.28). In actuality, a 

reaction is rarely complete. Nevertheless, whether a reaction is complete or not, the heat generated 

may calculated as follows. 
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The increments dni in the number of moles of the substance Ai produced by the reaction are related to 

each other by the following relation 

𝑑𝑛1

𝜈1
 =  

𝑑𝑛2

𝜈2
 =  … .  =  

𝑑𝑛𝑟

𝜈𝑟
 =  𝑑𝜆        (1.31) 

where  is called the progress variable of the reaction. If is d positive, reaction (1.28) proceeds 

forward; if d is negative, the reaction proceeds backward.  

The total enthalpy of the system containing n1 moles of component A1, n2 moles of component A2, ...., 

and nr moles of component Ar is 

𝐻 =  ∑ 𝑛𝑖𝐻𝑖

𝑟

𝑖=1

              (1.32) 

At constant T and P, the increase in the enthalpy due to the progress of the reaction is 

𝑑𝐻 =  ∑ 𝐻𝑖𝑑𝑛𝑖

𝑟

𝑖=1

              (1.32) 

(since, for pure substances, H is independent of composition. Thus, dH = Hdn + ndH = Hdn). 

Combining Eqs. (1.33) and (1.31) yields 

𝑑𝐻 =  ∑ 𝐻𝑖(𝜈𝑖𝑑𝜆𝑖)

𝑟

𝑖=1

 =  (∑ 𝜈𝑖𝐻𝑖

𝑟

𝑖=1

) 𝑑𝜆𝑖 =  Δ𝐻 𝑑𝜆𝑖          (1.34) 

Thus, the increase in enthalpy of the system is the (algebraic) product of the heat of reaction H and 

the extent of its progress. 

 

Example 1.3 

For a system containing 2 mol of calcium, 3 mole of graphite, and 1 mole of calcium carbide, find enthalpy 

change of the reaction:  Ca  +  2C  =  CaC2 ,  Δ𝐻298
0 =  - 15000 cal. 

Solution 

 Ca 2C      =       CaC2 

Initial state (mol):  2 3 1 

Final state (mol): 2- 3-2 1+ 

Since, according to the reaction stoichiometry, 2 mols of C are required for 1 mol of Ca and there are 2 mols 

of Ca but only 3 mols of C, the reaction will complete and proceed to the right. Consequently, 3-2 = 0 or,  = 

1.5, and the final state of the system contains 0.5 mol of Ca and 2.5 mol CaC2. 

Then, the enthalpy change of the reaction, H  = (Δ𝐻298
0 )   =  (-15000 cal) 1.5 = 22500 cal. 

 

The H of a reaction is a function of temperature, and to find its temperature dependence we note that 

(
𝜕∆𝐻

𝜕𝑇
)

𝑃
=  (

𝜕(∑ 𝜈𝑖𝐻𝑖
𝑟
𝑖=1 )

𝜕𝑇
)

𝑃

=  ∑ 𝜈𝑖 (
𝜕𝐻𝑖

𝜕𝑇
)

𝑃

𝑟

𝑖=1
=  ∑ 𝜈𝑖𝐶𝑃,𝑖

𝑟

𝑖=1
 =  ∆𝐶𝑃         (1.35) 

The expression is known as the Kirchhoff’s law. When all products and reactants are in their standard 

states, it becomes 

𝑑∆𝐻𝑜

𝑑𝑇
 =  ∆𝐶𝑃

𝑜         (1.36) 
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1.6 Heats of Formation 

The standard heat of reaction corresponding to the formation of a substance from its elements in their 

standard states is defined as the standard heat of formation of that substance. For example, the 

standard heat of formation ∆𝐻𝑓
𝑜 of CO gas corresponding to the reaction,  

C (graphite)  +  ½ O2 (gas)  =  CO (gas) 

can be expressed as: 

𝐻𝑓
𝑜(𝐶𝑂)  =  Δ𝐻0 =  𝐻𝑜(𝐶𝑂) − 𝐻𝑜(𝐶) −  

1

2
 𝐻𝑜(𝑂2) 

It is obvious that the standard heat of formation of an element in its standard state is zero. 

Knowledge of the heats of formation simplifies the calculation of the heat of reactions H of more 

complex reactions because they may be written as an algebraic sum of the heats of formation: 

Δ𝐻0 = ∑ 𝜈𝑖𝐻𝑓,𝑖
0

𝑟

𝑖=1
       (1.37) 

and 

Δ𝐻 = ∑ |𝜈𝑗| 𝐻𝑓,𝑗(products)
𝑟

𝑗=𝑘+1
− ∑ |𝜈𝑖| 𝐻𝑓,𝑖(reactants)

𝑟

𝑖=1
 = ∑ 𝜈𝑖𝐻𝑓,𝑖

𝑟

𝑖=1
           (1.38) 

Equation (1.38) is the mathematical equivalent of the Hess’s law. 

 

 

 


